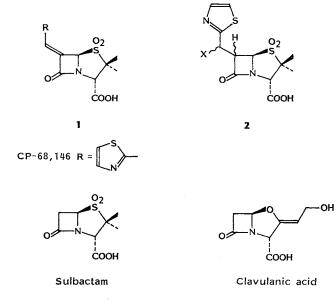
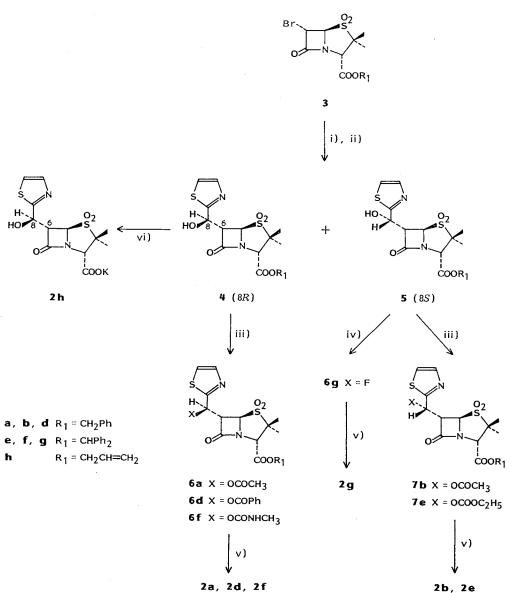
SYNTHESIS AND β -LACTAMASE INHIBITORY ACTIVITY OF THIAZOLYL PENAM SULFONES

YUHPYNG L. CHEN, KIRK HEDBERG, JOHN F. BARRETT and JAMES A. RETSEMA

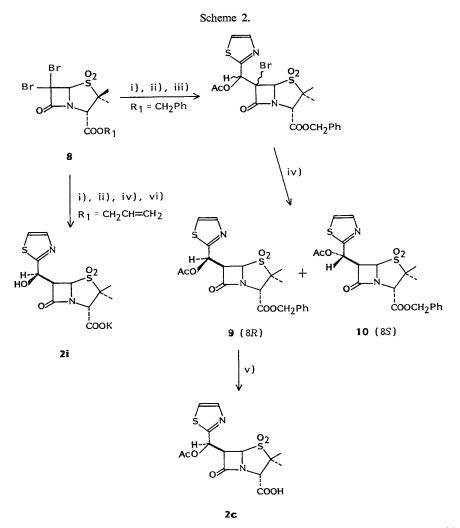

> Central Research, Pfizer Inc., Groton, CT 06340, U.S.A.


(Received for publication July 6, 1987)

In our previous papers^{1,2)}, we described the structure-activity relationships of 6-(heterocyclyl)methylene penam sulfones (1) as a new class of β -lactamase inhibitors and proposed a mechanism of enzyme inactivation for series 1. In continuation of these studies with series 1, we pursued the closely related structures in series 2, since they should follow a similar mechanistic pathway and should also act as good suicide inhibitors. Here, we report the syntheses of 2 and their synergy and β -lactamase inhibition data.

Preparation of the 6α -isomers in series 2 is illustrated in Scheme 1. Starting material, 6α bromopenicillanate 3, is readily prepared by esterification of the corresponding acid³³. Transmetallation of 6α -bromopenicillanate 3 by exchange with 1 eq of methylmagnesium bromide in THF at -78° C, followed by reaction with thiazole 2-carboxyaldehyde afforded a 55%-yield of a separable 2:1 mixture of diastereomers $(6\alpha, 8R)$ 4 and $(6\alpha, 8S)$ 5, respectively²⁾. Compounds 4 and 5 were acylated using several reagents, *e.g.* acetic anhydride, benzoyl chloride, ethyl chloroformate, or methyl isocyanate, in the presence of pyridine in methylene chloride at room temperature to afford 6 and 7, respectively. The $(6\alpha, 8R)$ fluoro derivative 6g was prepared in 55% yield by displacement reaction⁴⁾ of the $(6\alpha, 8S)$ hydroxy compound 5 with diethylamino-sulfur trifluoride in methylene chloride. Removal of the protecting group was accomplished as indicated in Scheme 1 to give the final compounds 2.

The corresponding 6β -isomer was prepared via an aldol condensation as outlined in Scheme 2. 6.6-Dibromopenicillanate 8, prepared by esterification of the corresponding acid³⁾, reacted with 1 eq of methylmagnesium bromide, followed by reaction with thiazole 2-carboxyaldehyde, gave a mixture of hydroxy adducts. Acetylation of this mixture, followed by stereoselective reduction with tin hydride⁵⁾, afforded a 95:5 mixture of diastereomers $(6\beta, 8R)$ 9 and $(6\beta, 8S)$ 10. The major isomer 9 was isolated in 50%yield, starting from 8, as crystals, mp 185°C (dec), by recrystallization from ether. Hydrogenation of 9 gave a 78%-yield of 2c. The $(6\beta, 8R)$ hydroxy compound 2i was obtained using a similar procedure as described in Scheme 2.



Scheme 1.

i) CH₃MgBr - THF, ii) thiazole 2-carboxyaldehyde, iii) for **a** and **b**, Ac₂O - pyridine; for **d**, PhCOCl - pyridine; for **e**, EtOCOCl - pyridine; for **f**, CH₃NCO - pyridine, iv) Et₂NSF₃, v) for **a**, **b** and **d**, H₂ - 5% Pd/C; for **e**, **f** and **g**, anisole, AlCl₃ - CH₃NO₂⁶⁾, vi) Pd(PPh₃)₄, PPh₃, potassium 2-ethylhexanoate⁷⁾.

The products $2a \sim 2i$ are inhibitors of various β -lactamases. The % inhibition data is presented in Table 1. Compounds 2a, 2b and 2c were selected for IC₅₀ studies and the results are shown in Table 2. The 8-acyloxy derivatives ($2a \sim 2f$) and the fluoro analog 2g showed good inhibitory activity. Among these, 2g possesses

the most potent β -lactamase inhibitory activity. In fact, its activity is equal to that of CP-68,146. Considering the possibility that elimination of **2** to CP-68,146 may occur prior to interaction with the enzyme, compounds **2a** and **2c** were chosen for stability studies in buffer pH 7.0 at 37°C. Compound **2a** was found to be stable (T_{1/2}>

i) CH₃MgBr - THF, ii) thiazole 2-carboxyaldehyde, iii) Ac₂O - pyridine, iv) *n*-Bu₃SnH, v) H₂ - 5% Pd/C, vi) Pd(PPh₃)₄, PPh₃, potassium 2-ethylhexanoate.

23 hours) under these conditions, suggesting that it does not eliminate to CP-68,146 prior to enzyme interaction. However, compound **2c** is gradually converted to CP-68,146 in buffer pH 7.0 at 37°C with a half-life of 1.5 hours (by HPLC); thus it is possible that some of the activity may actually come from the elimination product, CP-68,146. We propose that the elimination reaction for those stable compounds in series **2** (*e.g.* **2a**) occurs during the β -lactamase inactivation process, thus enzyme inactivation of **2** may provide the same acyl-enzyme inhibited form as does CP-68,146. On the other hand, the 8-hydroxy analogs (**2h** and **2i**), exhibit weaker penicillinase inhibition, perhaps because the 8hydroxy group of these analogs is a poorer leaving group. This leads to a slower inactivation rate to form a stable acyl-enzyme intermediate according to our proposed mechanism¹⁾.

The MIC data of a 1:1 combination of ampicillin plus inhibitor against several representative β -lactamase producing bacteria are listed in Table 3 using CP-68,146, sulbactam, and clavulanic acid as controls. All the derivatives $2a \sim 2g$ demonstrate synergistic activity comparable to the controls. The 8-hydroxy analogs (2h and 2i), however, only produce a moderate synergistic effect against penicillinase producing organisms (01A400, 51A129 and 53A079), but demonstrated synergy comparable to CP-68,146

Compound	Stereoisomer	х	Enzyme inhibition (%) ^a				
			<i>S.a.</i> 01A400	<i>E.c.</i> 51A129	TEM-1 51A560	<i>E.cl.</i> 67B009	<i>P.a.</i> 52A104
2a	$(6\alpha, 8R)$	OCOCH ₃	76	98		2	
2b	$(6\alpha, 8S)$	OCOCH ₃	59	71		9	
2c	$(6\beta, 8R)$	OCOCH ₃	82	98	87	5	64
2d	$(6\alpha, 8R)$	OCOPh	71	47	46	8	
2e	$(6\alpha, 8S)$	OCOOEt	52	40		12	
2f	$(6\alpha, 8R)$	OCONHCH ₃	30	26		8	
2g	$(6\alpha, 8R)$	F	90	100		68	
2h	$(6\alpha, 8R)$	OH	0	11		33	
2i	$(6\beta, 8R)$	OH	0	5		10	
CP-68,146 ^b	,		97	96	99	28	99
Sulbactam ^b			46	40	42	9	4
Clavulanic acid ^b			85	81			

Table 1. β -Lactamase inhibitory activity.

The *in vitro* % inhibitory data was determined by the microiodometric assay as described in ref 2. The % inhibition at the enzyme level was obtained at the following indicated concentrations (μ M) for inhibitor [I] and substrate [S]: *Staphylococcus aureus* (*S.a.*) 01A400, [I]/[ampicillin]=8/32; *Escherichia coli* (*E.c.*) 51A129, [I]/[ampicillin]=1/32; Plasmid TEM-1 51A560, [I]/[ampicillin]=1/32; *Enterobacter cloacae* (*E.cl.*) 67B009, [I]/[benzylpenicillin]=8/32; *Pseudomonas aeruginosa* (*P.a.*) 52A104, [I]/[benzylpenicillin]=8/32.

^b See ref 2 for the source of the material.

ъ

Table 2. Determination of IC_{50} of β -lactamase inhibitors.

Inhibitor	IC ₅₀ (μ M) TEM-1 β -lactamase ^a				
minonoi	No preincubation ^b	15 minutes preincubation 0.0027			
CP-68,146	0.09				
Sulbactam	3.0	0.31			
Clavulanic acid	9.8	0.19			
2a	410	0.47			
2b	7.6	0.13			
2c	2.9	0.017			

^a IC_{50} determinations were done as described in ref 2.

 β -Lactamase inhibitor added to substrate and enzyme at 0 time.

° β -Lactamase inhibitor preincubated 15 minutes with enzyme prior to addition of substrate.

Table 3. MIC data^a of a 1:1 combination of an inhibitor with ampicillin.

Inhibitor	MIC $(\mu g/ml)^{b}$ of inhibitor+ampicillin (1:1)							
	<i>S.a.</i> 01A400	<i>E.c.</i> 51A129	<i>H.i.</i> 042	<i>K.p.</i> 53A079	<i>S.m.</i> 63A095	<i>E.cl.</i> 67B009	<i>M.m.</i> 97A001	<i>P.a.</i> 52A104
2a	0.39	100	<0.2	6.25	50	100	12.5	>100
2b	0.39	>100	<0.2	6.25	50	> 100	25	>100
2c	0.39	50	<0.2	6.25	25	>100	6.25	>100
2d	1.56	100	_	12.5	25	> 100	12.5	>100
2e	0.78	100	_	6.25	100	100	6.25	>100
2f	1.56	100		12.5	50	>100	25	> 100
2g	0.78	50		6.25	50	100	25	>100
2h	6.25	> 100		25	12.5	50	3.12	> 100
2i	6.25	>100		50	12.5	100	6.25	> 100
CP-68,146	0.39	50	0.39	3.12	25	100	3.12	>100
Sulbactam	0.78	100	0.78	6.25	12.5	50	6.25	100
Clavulanic acid	0.39	12.5	0.39	12.5	50	100	>100	> 100
Ampicillin alone	50	>200	>200	100	>200	200	>200	>200

^a MIC determinations were done as described in ref 2.

^b Concentration of both components; *i.e.* MIC of 0.39 µg/ml is 0.39 µg/ml inhibitor plus 0.39 µg/ml ampicillin; test organisms: S.a., Staphylococcus aureus; E.c., Escherichia coli; H.i., Haemophilus influenzae; K.p., Klebsiella pneumoniae; S.m., Serratia marcescens; E.cl., Enterobacter cloacae; M.m., Morganella morganii; P.a., Pseudomonas aeruginosa.

-: Not tested.

and sulbactam against inducible cephalosporinase producing bacteria (63A095, 97A001 and 67B009). All the compounds in series **2** are devoid of antibacterial activity.

In conclusion, introduction of a functionality chemically equivalent to the 6-(2-thiazolyl)methylene group of CP-68,146 affords compounds which retain interesting β -lactamase inhibiting activity.

Acknowledgments

The authors thank Ms. SUZANNE HASKELL for experimental assistance.

References

- CHEN, Y. L.; C.-W. CHANG & K. HEDBERG: Synthesis of a potent β-lactamase inhibitor — 1,1-dioxo-6-(2-pyridyl)methylenepenicillanic acid and its reaction with sodium methoxide. Tetrahedron Lett. 27: 3449~3452, 1986
- CHEN, Y. L.; C.-W. CHANG, K. HEDBERG, K. GUARINO, W. M. WELCH, L. KIESSLING, J. A. RETSEMA, S. L. HASKELL, M. ANDERSON, M.

MANOUSOS & J. F. BARRETT: Structure-activity relationships of 6-(heterocyclyl)methylene penam sulfones; a new class of β -lactamase inhibitors. J. Antibiotics 40: 803~822, 1987

- MOORE, B.S.; R.D. CARROLL & R.A. VOLKMANN (Pfizer): Penicillanic acid 1,1-dioxide and its esters and intermediates. Brit. UK Pat. Appl. 2 045 755 A, Nov. 5, 1980
- MIDDLETON, W. J.: New fluorinating reagents. Dialkylaminosulfur fluorides. J. Org. Chem. 40: 574~578, 1975
- AIMETTI, J. A.; E. S. HAMANAKA, D. A. JOHNSON & M. S. KELLOGG: Stereoselective synthesis of 6β-substituted penicillanates. Tetrahedron Lett. 1979: 4631~4634, 1979
- 6) TSUJI, T.; T. KATAOKA, M. YOSHIOKA, Y. SENDO, Y. NISHITANI, S. HIRAI, T. MAEDA & W. NAGATA: Synthetic studies of β -lactam antibiotics. VII. Mild removal of the benzyl ester protecting group with aluminum trichloride. Tetrahedron Lett. 1979: 2793~2796, 1979
- JEFFREY, P. D. & S. W. MCCOMBIE: Homogeneous, palladium(0)-catalyzed exchange deprotection of allylic esters, carbonates, and carbamates. J. Org. Chem. 47: 587~590, 1982